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PICTURE OF THE M O N T H  

This TIROS V photograph shows a reinarkable large- 
scale band of up-slope stralus and frontal cloudiness just 
east of the Rocky Mountains. The photograph was 
taken on December 11, 1962, a t  1832 GMT (pass 2512, 
camera I, frame 8) and was received at  Point Mugu, Calif. 
via direct readout. The center-cross fiducial mark is 
located approximately 80 mi. northeast of Albuquerque, 
N .  Mex. near the crest of the Rockies. North is toward 
the top of the picture. 

At the time of this photograph a recent surge of Arctic 
air had invaded the Great Plains. Midday surface 
temperatures over Kansas were in  the teens, whereas 
over the western portions of Wyoming, Colorado, and 
New Mexico they were in the 30’s and low 40’s. The 
quasi-stationary front separating the two air masses lay 

north-south along the eastern slope of the Rockies, nearly 
coincident with the well-defined western edge of the 
cloud band. At the western edge, the cloudiness was 
low straliform, lifting and thinning out eastward, and 
becoming broken middle and upper layers over Kansas 
and Oklahoma (northeastern quadrant of photograph). 

The snow-covered higher elevations of the Colorado 
Rockies appear north and northwest of the center-cross 
fiducial mark. However, skies in that area were not 
completely clear; ground observers were reporting variable 
amounts of thin cirrus, largely invisibIe in this photo- 
graph. Thicker cirrus does appear toward the southwest 
corner. 

The slightly inferior quality of the lower half of the 
picture is due to  electronic “noise”. 
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ABSTRACT 

Thc accuracy of a numerical technique devised for the purpose of obtaining approximate solutions to an initial 
value problem defined by linearized equations for quasi-geostrophic flow is tested in certain simple cases for which 
it is possible to  obtain closed solutions. The numerical technique is found to bc extremely accurate. 

1. INTRODUCTION 

Numerical solutions to initial value problenis defined 
by linearized equations for quasi-geostrophic flow provide 
useful itiformation concerning certain meteorological prob- 
lems (for examples, see [l , 21). Infornintion concerning 
the accuracy of the numerical techniques used to obtain 
such solutions would , therefore, seem to be of general 
interest. 

Before proceeding with tlie computations described in 
[l] , the author tested tlie numerical technique used there 
by tipplying i t  to certain simple cases for which i t  was 
possible to obtain closed solutions. The present paper 
lirts been prepared to make the results of these tests 
nmilnble. 

2. BASIC EQUATIONS 

The model is defined by, 

(1) 
k v=-xv+ 
fa 

and 

( 3 )  

V is the horizontal wind, k is a unit-vertical vector, 4 is 
the geopotential, l=fo-'V2 4 is the relative vorticity, f is 
the Coriolis parameter, .fo is a standard value off, w is the 
individual derivative of pressure, p is pressure, and 

(4) 

which, a t  most, is taken to be a function of pressure alone. 

The dependent variables are written 

- 
The primes denote perturbation quantities. 4 (p,y) is 

the geopotential of the base state, U (11) is the mean zonal 
wind, i is a unit vector pointing eastward, x is east-west 
distance and y is north-south distance. From the geo- 
strophic relationship, 

a6 U ( p )  = -fo-' - 
bY 

By the usual teclinique, we linenrize equations ( 2 )  and 
( 3 )  to obtain 

(9) 

Elimination of the time derivatives between equations 
(9) and (10) yields 

We nssume solutions of the form 

(12) 

(13) 

z'=-=A(p, 4' t )  sin k x + B ( p ,  t )  cos kx 
9 

W' = C(p,  t )  sin kx+D(p ,  t )  cos kz  

Alternat,ely, we may write 
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where 

rbnd 

z'=RZ COS (k2+8J (14) 

w ' = R ,  COS ( k ~ ; + 6 , )  (15) 

tan 6,=A/B 

tan S,=C/D 

When equations (12) and (13) are substituted into (9) and 
(11) and coefficients of sin kx and cos kx are equated, one 
obtains 

and 

which are essentially the same as obtained by Wiin- 
Nielsen [2]. Equations (20) to (23) differ from those 
employed in [I] only bo the extent that  a harmonic de- 
pendence on the meridional coordinate was allowed in 
the previous study. 

The quantity, C,, is the Rossby wave speed. 

cR=u-(fi/k2) (24) 

The system of equations (20-23) may be solved nurneri- 
cally as an initial value problem through a simple com- 
putational cycle. Given initial values of A and B, initial 
values of C and D are obtained by solution of the diagnos- 
tic equations (22) and (23). Equations (20) and (21) may 
then be used t o  obtain A and B at  the nest time step. 
The cycle may then be repeated until the required time 
interval has been spanned. 

3. NUMERICAL TECHNIQUES 
The hite-difference grid to be applied to the vertical 

coordinate is shown by table 1. A high degree of vertical 
resolution was required to portray the vertical structure 
of the disturbances treated in the author's previous paper 
[l]. It is possible that the relatively simple disturbances 
treated in the present paper would allow the use of a 
substantially coarser mesh. However, since the purpose 
of the computations reported on here was imrely to test 
the computational procedure employed in [I], calculations 
were perforined only with the fine grid. 

By use of the subscript, i, to denote properties a t  the 
i th  grid point, the diagnostic equations (22) and (23), 
are approximated by 

TABLE 1.-Description of finite difference grid 

Orid-Point Orid-Point 
Index Pressure 

(mb.) 

1 ................... 
z....... ............ 
3. .................. 
4- .................. 
5.. .  ................ 
(i ................... 
I.. ................. 
8.. ................. 
9.. ................. 
10 .................. 
11 .................. 
12 .................. 
13 .................. 
14 .................. 
15 .................. 
16 .................. 
17 .................. 
18 .................. 
19 .................. 
20 .................. 
21 .................. 
22.. ................ 
23.. ................ 
24.. ................ 
?5..  ................ 
2G.. ................ 
27.. ................ 
28. ................. 
29 .................. 
30 .................. 
31 .................. 
32.. ................ 
33 .................. 

Equat ion  
Applied 

vorticity 
oniega 
vorticity 
omega 
vorticity omega 

vorticity 
omega 
vorticity 
omega 
vorticity 
omega 
vorticity 
oniega 
vorticity omega 

vorticity 
omega 
vorticity 
omega 
vorticity oniega 

vorticity 
Olllega 
vorticity omega 

vorticity omega 

vorticity 
omega 
vorticity 

-Ui-1) Bi-- 2pkAp" (B,+,-B,-,) ( 2 5 ~ )  
j o 2  

and 

-ui&ti+- (A i+ l -A i - l )  (2.5b) 
j o 2  

i = 3 ,  5 ,  7 , .  . . .  31 

The pressure increment, Ap, is 31.25 nib. 
grid points, 

At the even 

J Di= a+l+Di-l 2 (26) 
c -Ci+l+G-l 

2 i -  

i=2 ,  4, 6 , .  . . .  32 

Boundary conditions are Cl=C33=DI=D33=0. The 
prognostic equations, (20) and (21), are applied at the 
even grid points in the approximate forms 

i=2,4,  6, . . . .  32 
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t+At while symbols without superscripts denote the h a 1  
estimate of quantities a t  time t. At is the length of the 
time step. The iterative process defined by (39) and (40) 
is continued until 

(28) 

At the odd grid points 

i = 3 ,  5, 7, . . ., 31 

Equations (25a) and (25b) may be written 

-ci+z+aici--Gi-z=ri 

-Di+z+aiDi-Di-?=yE 

i=3,  5, 7, . . ., 31 

In  (29) and (30) 

4ai k2Ap2 cY*=2+- 16' 
4k3Apg 

(B i+ l -B i - l ) - -  (Ui+l-Ui-l)& (32) 
fo2 jOZ 

Richtmyer [3] gives a simple method for solving the 
diRerence equations (29) and (30). To employ this 
method, we introduce the following definitions, 

( t f A t )  -Ain) ( t f A t ) l < ~  (414 

IBP"'(t+At)--Bln'(t+At)I<~ (41b) 
:md 

where T is a pre-assigned positive tolerance. Guesses are 
(30) needed forr)')(t+At) and r;'"(t+At). These are taken as 

(29) 

I ' ) ' ) ( t + A t ) = r Z ( t )  (424 

(42b) 
a n d  

(t +A t )  = r ; ( t )  

(31) Since the coefficients C and D are implicit in r and r' and 
since C and D ,  in turn, are calculated from A and B (by 

(34) 

(35)  

(36) 

i=3, 5 ,  7, . . ., 31 :hnd El=O, Fl=O, F ~ G O  

Then, tmording to Richtrnyer [SI, 

CI=Ei Ci +? + F, 
D t = Et D,  + z  +E 

(37) 

(38) 
whew 

i=31, 29, 27, . . ., 3 and Cl=C33=D33=DI=o 

The prognostic equations (27a) arid (27b) are solved as 
follows. We write 

A t  
2 By+l ) ( t+a t )  =Bi(t) +- [r;(t) +r;cn) ( t + ~ t ) ]  (40) 

i=2, 4, 6, . . ., 32. n=1, 2, 3, . . . . 

The superscript, n, denotes the nth estimate a t  time 

. I  

means of equations (31-38)), it is clear that C and D must 
be recalculated for each new value of the superscript, n. 

The iterative process defined by equations (39) and (40) 
inay be thought of as a generalization of Milne's [4]  itera- 
tive technique for the solution of a single ordinary dif- 
ferential equation. It is also siniilnr to a method recently 
employed by Veronis [ 5 ] .  hfilne shows (again for the 
case of a single ordinary differential equation) that a 
simple analysis may be performed to determine whether 
or not his iterative process will converge. However, i i i  

our case, where we deal with a system of ordinary differ- 
ential equations (especially in view of the fact that the 

are dependent on the solutions of (29) and 
(SO)), convergence can be established only by calculation. 
In the cases attempted, convergence was attained without 
difficulty (for all computations, At=30 min., 7 = 1 O W 3  m.). 

The technique described above, together with the values 
of At and T just given, provides extremely accurate solu- 
tions to the test cases described below. It is possible that 
larger time intervals and tolerances would have provided 
results which would have been sufficiently accurate for 
the purposes of the author's previous paper. Indeed, i t  
is possible that a simpler method of time integration would 
h v e  sufficed. However, the author is inclined to begin 
with methods that provide, perhaps, a greater degree of 
ticcuracy than is required and then to adopt less accurate 
techniques only if the cost of the more accurate result is 
unreasonable. Following this philosophy, the technique 
described above, with the tolerance and time interval 
given, was coded first. Since this program provided 
results which were more than adequate a t  a moderate cost 
(running time for a 12-hr. solution was about 4 min. 011 

the relatively slow and inexpensive G.E. 225 computer a t  
the National Hurricane Research Laboratory), no modifi- 
cations to the original program were made. 

Admittedly, the exclusion of additional calculations 
leaves unanswered questions with regard to how closely 
our solutions could have been reproduced by simpler 
techniques using larger tolerances and coarser space and 
time meshes. However, investigation of these problems 

and 
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a t  a time when we already had an accurate and economical 
program would have delayed the computations for 
which the program was written (those reported in [I]) 
and might have been more expensive than simply pro- 
ceeding, as we did, with the original program. 

It may be argued that, since the physical model is 
rather crude, little is to be gained by obtaining numerical 
solutions of more than moderate accuracy. However, 
when crude numerical techniques are employed, we 
frequently find it difficult to determine which aspects of 
the solution are a result of the physical assumptions and 
which are due to numerical approximations. For this 
reason, the author is inclined to adopt numerical tcch- 
niques which are as accurate as can be justified by the 
economics of the situation and the importance of the 
physical problem. 

The results of the test calculations are presented in  
the following sections. 

4. THE ROSSBY WAVE CASE 

When U and u are constants (u>O), equations (20)- 
(23) may be written 

(43) 

(44) 

(45) 

It is noted that C, (by equation (24)) is also a constant 
for this problem. If, 

A(O,p)=O, B(O,p)=Bo=a constant, (47) 

then equations (45) and (46), together with the boundary 
conditions on C and D, can be satisfied only by the trivial 
solutions 

c(o,P)=D(o,P)=o (48) 

From (43), (44), (47), and (48), we find that bA/bt and 
bBIBt a t  t=O are independent of pressure. If we now 
differentiate (45) and (46) with respect to time and note 
that a t  t=O bZB/bpbt and b2A/bpbt ore zero, we find that 
the initial values of bC/bt and bD/& are zero. This may 
in turn be used to show that the initial values of 
b2A/bt2 and b2B/bt2 are independent of pressure which 
may then be ,used to show that the initial values of 
b2C/bt2 and b2D/bt2 are zero. In  the same way, i t  
may be shown thrtt all time derivatives of C, D, bA/bp, 
and bB/bp are initially zero. Hence, the motion must 
be isobaric and invariant with pressure for all time. 
Equations (43) and (44), therefore, reduce t'o 

end 

In view of the initial conditions, the solution to the 
problem is 

A= Bo sin kCRt (50%) 

B= Bo COS kCRt ( 5 0 ~  

which shows that the disturbances move with constant, 
:Lmplitude a t  the Rossby speed. 

Numerical solutions were obtained for L=2,000, 6,000, 
and 10,000 kin. (t=12 hr., At=30 min., T = I O - ~  ni., 
J0=10-4 set.-', ,t7=16X10-12 m.-' set.-', (r=0.5 mts 
units, U= & 10 in. set.-', B0=97.4 in.). Table 2 gives 
the results for the U=lO m. set.-' case (values obtained 
from the numerical solution were identical n t all pressure 
levels). The amplitudes are accurate to within three 
significant figures and have a percentage error (to tlic 
ilearest whole percent) of zero. The phase angles, given 
to the nearest whole degree, are exact a t  L=2,000 and 
6,000 km. but are in error by 1' a t  L=10,000 krn. I n  
the U=-10 m. set.-' case (table 3) ,  the amplitudes 
we again exact to three significant figures and to the 
nearest whole percent. The phase nngles are exact to 
the nearest whole degrec. 

5. ADVECTIVE MODEL WITH BAROTROPIC BASE 
STATE 

If u is zero and U is constant, equations (20-23) become 

and 

(54) 

If we eliminate C between equations (51) and (53) and 
also eliminate D between equations (54) and (52), me 
obtain 

(55)  
and 

(56) 
ku- b A  

bpbt- 

If we now eliminate B between equations (55) and (56), 
we find 

The general solution to  equation (57) is 

(57) 
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TABLE 2.-Con~purison between the closed solation (epnations (50a)  
und ( 5 0 b ) )  und the numeracnl solitlaon f o r  the Rossby wave case 

6=16X1O-'L see.-' na.-1, fn=10-4 set.-', u=O.5 nits unats, U=10 

where 
1 (U=u constant, u = u  constant, A(0, p )  = a  constant=O, 13(0, p ) = a  

constunt=&). Vulues of the paranieters are, BO=97.4 n a . ,  Po 
~ l = - ~ D o F  I P  ( ) d  P 

2,000 ........ 
(i,000.-. ..... 
10,000..~. . - - 

583 

(67) 

97 4 97 4 0 00 -65 - 65 0 G=K1 sin kCRt+K2 cos kCRt-Fl sin kUt (69) 
97.4 97 4 0 00 0 
97 4 97 4 0.00 -46 -1 

lk. sec.-I, t=lb hr., Al='sO min. ,  ~ = l O ' 3  m. Aniplitzides (12) are 
i,n uni t s  of naeters and ure given to th:ree signiJicant Jigures. Phase 
nngles (6) are given to the ,newest whole degree. Subscript N denotes 
properties of the ,n?Lniericul sol?ation; vulues without subscripts are 

If H is eliminated between (65) a,nd (66), we have 

f r o m  the closed solxlion. @+k2C;G= dt2 P (CR+ U)Fl sin kUt (68) 

-________---- I Rs I Xs--R I,(kni) R 

..... 

K 

2,000--. 97.4 97.4 0.00 
6,000.-. - - ~ - - 97.4 97.4 0. 00 
10,000.. 97.4 97.4 0.00 - i 9  -79 ..... 

T,(kul) 1 R I RN 1 1 6 1 6~ 1 -6N--6 The genertd solution to equcbtion (68) is 

6s--6 
From (65) and (70) ,  me find 

- 0 
0 
0 H=-Fl COS kUt+Ki COS kCRt (71) 

- 
A(0, p)=O, we 2ia\*e, f r o m  (60), G(O)=O and, Iience, 
from (69), K2=0 so that equation (69) reduces to 

B , = I ~ ~ ( ~ ~ )  -E+K, A=Fl(p)  sin kUt+F,(p) cos kUt+ G(t) (58) 

If we Vertical integration of (72) yields P1(p), F2(p) and G(t) are functions of integration. 
take A( 0, p )  = 0 we find 

F2 (21) = 0 
B, = Kl 

(59) From (72) and ('73) 

(72) 

(73) 

G(0) = O  (60) Bo= PI (1)) -F1 +go (74) 

By use of (58) mcl (59), We will limit ourselves to  initial conditions such t h t  
Bo=O. Furthermore, we will select F,(p) such thtit 
- 

(6l) F ~ = o .  Therefore A= r", ( p )  sin k Ut + G(t) 

From ( 5 5 ) ,  (59-61) Bo= I'l (PI (75) 

B = Isl, ( p )  COS kUt + I$( t ) (62) and the solution is given by 

where H(t)  is a new function of integration. 
( 5 2 )  and the boundwy conditions o n  C and D we find 

Froin (51), 

( l p o ( g - k C a B  1 dp=O 

I"' ( g- -kCl ,A)  dp= 0 

A= Bo sin kUt (76) 

B= Bo COS kUt (77) 

(It  should be noted that the requirement Bo=O eliminates 
the wave component which moves with the Rossby 
speed.) Finally, we choose 

where Boo is a constant. 
We take fo= sec.-', p= 16 X m.-' set.-', 

t=12 hr., U=10 m. sec.-l, BO0=9i.4 in., At=30 min., 
T = ~ O - ~  in. The solution for L=2,000 km. is given by 
table 4. Amplitudes obtained from the numerical solu- 
tion are exact to three significant figures and to the nearest 
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6 N  

......._._ 

TABLE 4.-Comparison between the closed solution (equations (76) 
and (77 ) ) ,  and the numerical solution f o r  the advective model wi th  
constant zonal wind (o=O, U = a  constant, A(0, p)=O, 13(0, p )  
=Boo ( d p - p ~ ) / p o ) .  Values  of the parameters are, L=2000 km, 

f ~ = l O - ~  set.-', p=16X10-12 m.-I set.+, u=10 m. set.-', B00=97.4 
m., t=12 hr., At=30 inin., 7 = l O - 3 1 n .  Ampl i tudes  ( R )  are in  
uni t s  of meters and are given to three significant figures. Phase 
angles (6) are given to the nearest whole degree. Subscript  Ai 
denotes properties of the nuinerical solution; values without sub- 
scripts are f r o m  the closed solution. 

6N-6 

._..__.._.._ 

TARLE 5. -~Ume as table 4 except L==6000 kin. 

73. i 
67.0 
60. 9 
54.8 
48. 7 
42.6 

R 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

.. . 
24.4 
18.3 
12.2 
6. 09 
0.00 
6. 09 

12.2 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0. 00 

18.3 
24.4 
30.4 
36.5 
42.6 
48.7 
54.8 
GO. 9 
67.0 
73.1 
79.2 
85.3 
91.4 

. . . . . . . . - - - 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

- -. . . - - -. - . 

RN-R 
R 
- 

.....~~.... 
0.00 
0.00 
0. 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0. 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0. 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

6 Pressure 
(mb) 

00.00 
31.25 
62.50 
93.75 

125.00 
156.25 
187.50 
218.75 
250.00 
281.25 
312.50 
343.75 
375.00 
406.25 
437.50 
468.75 
500.00 
531.25 
562.50 
593.75 
625.00 
656. '25 
$87.50 
118.75 
750.00 
781. ?5 
812.50 
843.75 
875.00 
906. 25 
937.50 
968.75 

1000.00 

206 
206- 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 

26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 

..____.._. 

97.4 
91.4 
85.3 
79.2 
73.1 
67.0 
60. 9 
54.8 
48.7 
42.6 
36. 5 
30.4 
24.4 
18.3 
12.2 

6.09 
0.00 
6.09 

12.2 
18.3 
24.4 
30.4 
36. 5 
42.6 
48. 7 
54.8 
60. 9 
67.0 
73.1 
79. 2 
85.3 
91.4 
97.4 

. . . . . . . . . . . 
91.4 
85.3 
79.2 
73.1 
67.0 
60.9 
54.8 
48. 7 
42. 6 
36.5 
30.4 
24.4 
18.3 
12.2 
6.09 
0.00 
6. 09 

12.2 
18.3 
24.4 
30.4 
36.5 
42. 6 
48.7 
54.8 m. 9 
67.0 
73.1 
79. 2 
85.3 
91.4 

206 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 
206 

26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 

. . . . . . - 

-- 

Pressure 
(nib.) 
-~ 

00.00 
31.25 
62. 5n 

R RN I 
R 

6.v-6 6 6 .Y 

........... ~.~....._.. 
91.4 1 0.00 
85.3 0.00 

. . . . . . -. . 
258 
258 
258 
258 
258 
258 
258 
258 
258 
258 
258 
258 
258 
258 
258 

58 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 

. . . - -. . -. 

97.4 
91.4 
85.3 
59.2 
53.1 
67.0 
60.9 
54.8 
48.7 
42.6 
36.5 
30.4 
24.4 
18.3 
12.2 
6.09 
0.00 
6.09 

.- .. 
93.75 

125.00 
156.25 
187.50 
218.75 
250.00 

79.2 I 0.00 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

... 

281.25 
312.50 
343.75 
375.00 
406. 25 
437.50 
468.75 

36.5 0.00 
:in. 4 I 0. oo 

5 0 . 0 0  
531.2.5 

_.___~~... 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 
78 

.._.....___ 
0 
0 

.~~ ~~ 

562.50 
593.75 
625.00 
656.25 
687.50 
718.75 
750.00 

12.2 
18.3 
24.4 
30.4 
36. 5 
42.6 
48.7 
54.8 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

I - - - - - - - - - - - -  

7R1.25 .~ ~ 

812.50 
843.75 
875.00 
906.25 
937.50 
968.75 

1000.00 

67. 0 
73.1 
79.2 
85.3 
91.4 
97.4 

and 

We eliminate C between equations (81) and (83) and 
eliminate D between (52) and (84). This gives whole percent of error; phase angles are exact to the nearest 

whole degree. Table 5 shows that the same high degree 
of accuracy is achieved by the numerical solution in the 
case with L=G,OOO km. The calculation was repeated 
with L= 10,000 km. (results not shown) with equally good 
results. 

aB a'* -kUoB+kUo(l-p*) - -- 
aP* 

and 

(56) 

6. ADVECTIVE MODEL, BAROCLINIC BASE STATE, p=O 

If we make the change of variable 
We now eliminate A between (85) and (86) to obtain 

b4B b2B +kU --0 
ap*2a t 2  aP*=- P* = PIP0 (79) 

where U= U0(1-p*). From (87), take u=O, p=O and choose 

(88) 
a'B 
aP* 
-- 2-Fl(p*)  sin kUt+F2(p*) cos kUt 

where U, is a constant and p ,  is 1,000 mb., equations 
(2,0-23) reduce to 

Fl(p*) and F 2 ( p )  are functions of integration. 
initial conditions are 

If the 

A(O,P*)=O (894 

and 
B(O,p,)=Bo=a constant 

then F2(p,)=0. Differentiation of (86) by p ,  gives 
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However, because of (Sga), (90) gives Fl(p*)=O. 
fore, 

There- 

-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 

0. 00 
-0.01 

0. 00 
0. 00 

-0.01 
-0.01 

0.00 
0.00 

-0.01 
-0.01 
-0.01 

0.00 
0. 00 

-n ni  

and 

108 
99 

101 
103 
105 
108 
111 
114 
117 
121 
125 
129 
134 
139 
144 
150 
155 
161 
167 
172 
177 

b2 A/bp*' = 0 

b2 B/bp*' = 0 

.. .~ 
-0.01 

0. 00 
0.00 

-0.01 
0.00 

-0.01 

which are valid for all time. Direct integration of equa- 
tions (91) and (92) gives 

-. . 
182 
186 
190 
194 
197 
200 

and 

-0.01 
-0.01 
-0.01 
-0.01 
-0.01 

.__.... ~._. 

(93) 

(94) 

203 
205 
208 
210 
212 
213 

where S(t), M(t) ,  G(t) and H(t) are functions of integra- 
tion. Substitution of (93) and (94) into (85) and (86) 
gives 

and 
dS/d t =kUoG+ kUo H 

d Gld t =- kUo8- kUo M 

(95) 

(96) 

From (Sl), (82), (95) and (96), we obtain 

+ F O G -  k U o H - x )  dS p*- kUoGp,2 (97) 

and 

Since C and D both vanish at  p* =O and p* = 1, equations 
(97) and (98) may be integrated over the depth of the at- 
mosphere to  yield 

(99) 
and 
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We do not contend that the solution, as given by 
equations (101) and (102), is representativc of the develop- 
ment process in the real atmosphere nor that i t  is con- 
sistent with the assumptions associated with the lineariza- 
tion of the problem. However, the availability of this 
solution does allow a rather severe test of the numerical 
technique for cases in which amplification takes place. 
The nunierical results shown below indicate that the 
numerical solution yields intensification which is entirely 
consistent with that given by the solution to the difl'er- 
entia1 equations. 

Table 6 compares the solutions for 1;=2,000 kin., 
f,,=10-4 set.-' @=16X10-12 in.-' set.-', u0=40 m. sec.-', 
B0=97.4 in., t=12 hr, At=30 min. and ~ = l O - ~ r n .  Errors 
in the amplitude are 3 in. or less and percentage errors 
are no larger than 1 percent. The phase angles, a t  three 
of the grid points, are in error by lo .  At the remaining 
grid points they are exact to the nearest whole degrec. 
The results for L=6,000 lm. are shown by table 7. 
Amplitudes obtained from the numerical solution are 
exact to three significant figures and to the nearest whole 
percent of error. The phase angles are exact to the 
nearest whole degree. Table 8 shows that the results 
with L=10,000 I m .  are equally as good. 

TARLE B.-Co?nparisons between the closed solution (equations (101) 
and (102')) and the numerical solution for the advective model wi th  
p=O and with a baroclinic zonal current (u=O, U= Uo ( l - p * ) ,  
A(0, p*)  =0, B (0, p*)  =&=a constant). Values  o the parameters 

t = l 2  hr., At=SO min., 7=lWm.  Ampl i tudes  (R )  are in uni t s  of 
meters and are given to three signi;licant jigures. Phase angles (6) are 
given to the nearest whole degree. Subscript N denotes properties 
of the numerical solution; values without subscripts are properties of 

are, L=d000 km.,  Bo=97.4m., f ~ = l O - ~ ,  sec.-', t o=40m. sec.-l, 

the closed solution. 

Pressure 
(mb.) 

Equations (95), (96), (99), and (100) determine G, H, S, 
and A4 to within arbitrary constants. These solutions 
may then be substituted into (93) and (94) and the initial 
conditions (equations (89a) and (89b)) applied to  deter- 
mine the arbitrary constants. The procedure, though 
simple, is long and tedious and, for the sake of space, is 
omitted here. The results obtained are 

A=Bo[sin f i v t  cosh vt--@(1-2p.J cos &t sinh vt], 

(101) 

B=Bo [cos &t cosh vt+a(1-2p,) sin &t sinh v t ]  (102) 

where 

00.00 
31.25 
62.50 
93.75 

125.00 
156.25 
187.50 
218.75 
250.00 
281.25 
312.50 
343.75 
375.00 
40F. 25 
437.50 
468.75 
500.00 
531.25 
562.50 
593.75 
625.00 
656.25 
687.50 
718. i 5  
550.00 
781.25 
812.50 
843. 75 
875.00 
006.25 
937.50 
968.75 

1000.00 

R 

457 
437 
417 
397 
379 
360 
343 
326 
311 
296 
283 
272 
262 
254 
248 
245 
244 
245 
248 
254 
262 
272 
283 
296 
311 
326 
343 
360 
379 
397 
417 
437 
457 

R .v 

._____-__. 
434 
414 
395 
376 
358 
341 
325 
309 
295 
282 
270 
260 
253 
247 
243 
242 
243 
247 
253 
260 
270 
282 
205 
309 
325 
341 
358 
376 
395 
414 
434 

.__----__.. 
99 

101 
103 
106 
108 
111 
114 
117 
121 
125 
129 
134 
139 
144 
150 
156 
161 
167 
172 
177 
182 
186 
190 
194 
197 
200 
203 
206 
208 
210 
212 

6.v-8 

. - -. -. . -. . 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
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TABLE %--Sattie us table 6 except 1=48 hr. TABLE i.-Sunie as  table 6 except L=6000 kin. 

R 
XI02 

R N 
XI02 

R.v-R 
R 

~ 

R,v-R 
R 

~ Ii N Pressure 
(mW 

6 6 .Y 

00.00 
31.25 
62. .50 
9.3. 75 

125.00 
15(i. 25 
187. 50 
218.75 
250.00 
281.25 
312.50 

,376 no 
343.75 

144 
141 
137 
134 
131 
128 
I25 
123 
120 
118 
11G 
115 
113 
112 
112 
111 
111 
111 
112 
112 
113 
115 
l i G  
118 
120 
123 
125 
128 
131 
134 
137 
141 
144 

-. . . . . . . . . . 
141 
137 
134 
1.71 
128 
125 
123 
120 
118 
118 

-~~....... 
0. 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0. 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

12 
14 
16 
18 
20 
22 
24 
27 
29 
32 
35 
37 
40 
43 

.......... 
14 
16 
16 
20 

. . . . . -. 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

513 
489 
465 
442 
420 
399 
3 i 8  
358 
339 
322 
30G 
291 
279 
269 
262 
255 
256 
258 
282 
269 
279 
291 
306 
322 
339 
358 
378 
399 
420 
442 
465 
489 
513 

.__........ 
47G 
454 
43 1 
410 
386 
368 
349 
330 
313 
298 
284 
272 
2 (j2 
255 
251 
250 
251 
255 
2G2 
2 72 
284 
'198 
313 
330 
349 
31% 
3x8 
410 
431 
454 
4iG 

........_. 
-0.03 
-0.02 
-0.02 
-0.02 
-0.03 
-0.03 
-0.03 
-0.03 
-0.03 
-0.03 
-0.02 
-0.03 
-0.03 
-0. c3 
-0.03 
-0.02 
-0.03 
-0.03 
-0.03 
-0.03 
-0.02 
-0.03 
-0.03 
-0.03 
-0.03 
-0.03 
-0.03 
-0.02 
-0.02 
-0.02 
-0.03 

202 
203 
205 
207 
209 
212 
214 
218 
22 1 
225 
2' 9 
233 
238 
244 
250 
2% 
262 
2G8 
274 
280 
286 
290 
295 
299 
302 
30G 
309 
3 12 
314 
31G 
318 
320 
322 

_..._ 
204 
205 
"7 
210 
'112 
215 
218 
221 
225 
229 
234 

144 
250 
256 
262 
'168 
274 
280 
266 
291 
295 
299 
303 
30G 
309 
312 
315 
317 
319 
320 

239 

00.00 
31. 25 
61.50 
93.75 

125.00 
156.25 
187.50 
218. i 5  
250.00 
281.25 
312.50 
343.75 
375.00 
406. 25 
437.50 
468.75 
500.00 
531.25 
582. 50 
593.75 
625.00 
656. 25 
687.50 
718. i 5  
i50.00 
781.25 
812.50 
843.75 
875.00 
906.25 
937.50 
986.75 

1000.00 

..__..__._ 
1 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
1 
1 
0 

22 
24 ~~ 

27 
29 
32 
35 
3 i  
40 
43 

115 
113 
112 
I12 
111 
111 
111 
I12  
112 
113 

. .. 
40G. 25 
437.50 
468. 75 
500.00 
531.25 
562.50 

46 
49 
52 
55 
58 
61 
64 
66 
69 
72 
E 
I 1  
79 
82 
84 
86 
88 
90 
92 

48 
49 
52 
55 
56 
61 
84 
66 
69 
72 
74 
77 
79 
82 
84 
86 
88 
90 

593.75 
625.00 
856.25 
G87. 50 
718. 75 
750.00 
781.25 
812.50 
843.75 
875.00 
906. 25 
937.50 
988.75 

1000.00 

115 
116 
118 
120 
123 
125 
128 
131 
134 
137 
141 

TABLE 8.--Sunie us table 6 except L=10,000 km.  TABLE 10.--Sanie us table 6 except L=6000 ktu. and t=48 hT. 

Rx-R 
R 

~ Pressure 
(nib.) 

R R'S 6.v 6s--6 Pressure 
(inb.) 

6s 6 

00.00 
31.25 
02.50 
93.75 

125.00 
156. 25 
187.50 
218.75 
250.00 
281.25 

,343.75 
375.00 
406.25 
437.50 
468. 75 
500.00 
531.25 
562.50 
593.75 
825.00 
65F. 25 
687.50 
718. 75 
750. no 
781.25 
812.50 
843.75 
875.00 
906.25 
937.60 
968. 75 

1000.00 

312.50 

......_._. 
114 
113 
111 
110 
109 
108 
I ni 

3 
5 
6 
8 

IO 
11 
13 
15 
16 
18 
20 
22 
24 
25 
27 
29 
31 
33 
35 
37 
39 
40 
42 
44 
46 
48 
49 
51 
53 
54 
56 
57 
59 

.........__ 
0 
0 
0 
0 
0 

00.00 
31.25 
62.50 
93. 75 

125.00 

i 8 1  
745 
710 
676 
642 
610 
579 
549 
522 
496 
472 
451 
433 
419 
406 
402 
399 
402 
408 
419 
433 
451 
472 
498 
522 
549 
579 
610 
642 
678 
710 
745 
781 

....~~~~.. 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0. 00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 
-0.00 

148 
150 
151 
153 
151; 

..... ~ ~ . ~ . .  
150 
152 
154 
156 

. . . . . . . . . . . 
0.00 
0.00 
0.00 
0.00 

._.__...... 
743 
708 
674 
64 1 
608 
577 
548 
520 
494 
471 
4.50 
432 
417 
4 0 i  
400 
398 
400 
407 
417 
432 
450 
471 
494 
520 
548 
577 
608 

674 
708 
743 

rd 1 

0.00 
n no 

156. 25 
167. 50 
218. 75 
250.00 
281.25 
312.50 
R43. i 5  
375. 00 
406. 25 
437.50 
468. 75 
500.00 
531. 25 
5G2. 50 
593. 75 
625.00 
65G. 25 
687.50 
718.75 

781.25 
812. 50 
843. 75 
875.00 
90G. 25 
937.50 
968. 75 

1000.00 

750.00 

I 58 
161 

1117 
171 
175 

184 
190 
I95 
20 1 
mi 
213 
219 
225 
230 
23.5 
289 
244 
247 
250 
254 
256 
259 
2Gl 
263 

1 rd 

1 so 

158 
161 
lG4 
167 
171 
l i 5  
180 
185 
190 
195 
201 
207 
213 
219 
225 
230 
21 5 
240 
244 
247 
251 
254 
257 
259 
261 
263 
265 

. -. - - . . . 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.00 
0.00 
0.00 
0.00 
0. 00 
0.00 
0.00 
0.00 

15 
I 6  
18 
20 
22 
24 
25 
27 
29 
31 
33 
35 
37 
39 
40 
42 
44 
46 
48 
49 
51 
53 
54 
56 
57 

.". 
101; 
105 
104 
104 
1 03 
1 03 
102 
102 
102 
IO2 
102 
103 
103 
104 
I04 
1 05 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0. 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 OB 
107 
108 
109 
110 
Ill 
113 
114 265 

26G I - - - - - - - - - - -  ..-. 

As a final demonstrittion of the :~ccuracy of the nu- 
merical technique, calculations were extended to 48 hr. 
with p=O, B0=97.4 In., f0=10-4 set.-', u0=40 m .  
set.-', 4t=30 min. T = ~ O - ~  m.  The results, with L=2,000 
kin., are given by t:ible 9. It will be noted that although 
amplitudes (as given by the closed solution) have in- 
creased by a factor in excess of lo2, the numerical solution 
gives the correct value to within 2-3 percent. Phase 
angles obtained from the numerical solution are correct 

to within 1' or less. Table 10 gives the results with 
L=6000 kin. Here, the amplitudes obtained from the 
numerical solution tire correct to within 1-2 m. ; percenttige 
errors, to the netirest whole percent, are zero. Phase 
angles are accurate to within 1 '. 

7. SUMMARY 
I n  n previous paper [I], the author proposed a numericril 

scheme for obtaining solutions to an initial value problem 
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defined by  linearized equations for quasi-geostrophic 
flow. Tests to determine the accuracy of the scheme 
were conducted but were not discussed in [I]. Since 
both the problem and the numerical method appetxr to be 
oi  general interest, the present paper was prepared for 
the purpose of making tlie results of these tests avaihble. 
The tests consisted of applications of the numericid 
method to three simple models for which it was possible 
to cbtain closed solutions. The nuniericd solutions were 
found to be remarkably good. 

The first test model was one in which the mean zona1 
current and the mean static stability were constant in the 
vertical. The amplitude and phase angle of the geo- 
potential perturbation were initially constant in the 
vertical. The closed solution gives il disturbance moving 
a t  the Rossby speed with constant amplitude and for 
which the motion is isobiwic and invarinnt with pressure 
for d l  time. Numerical solutions were obtained out to 
12 hr. with half-hour time steps for wavelengths of 2,000, 
6,000, and 10,000 km. The results showed amplitudes 
which were :iccurute to three significant figures and phuse 
mgles which were accurate to within 1”. 

T n  the second te;t case, the mean zonal current was 
again barotropic; the mean static stability was zero. The 
amplitude of the geopotentinl perturbation was initially 
iL linear function of pressure (zero a t  the 500-mb. level). 
The phase of the initial geopotential perturbation was 
constant above and below the 500-nib. level with the 
perturbation in the upper half of the atmosphere being 
180” out of phase with that in the lower troposphere. 
The closed solution gave iL wave moving with constant 
ilmplitude :it the speed of the basic current. Again, 
numerical solutions were obtained for L=2,000, 6,000, 
and 10,000 kin. with half-hour time steps out to 12 hr. 
For a11 three wavelengths, the numericid calculation gave 
amplitudes which were exwt  to the newest whole degree. 

The third model was b:Lroclinic with the basic zonnl 
current being n linear function of pressure; the mean 
static stnbilitj- WRS zero and the beta-pai~ameter was zero. 
The amplitude and phnse angle of the geopotentinl 
perturbation were initinliy constant with pressure. For 
this case, the closed solution, of course, gave disturbiinces 
which increixsecl in amplitude with time. Again, numerical 
solutions out to  12 hr. with half-hour time steps were 
obtained for wavelengths of 2,000, 6,000, and 10,000 kin. 
At  L=2,000 kin. the amplitude increased by a factor of 
2-5 over the 12-lir. period. Amplitudes obtained from 

the numerical solution were, liowever, correct to within 
2-3 ni. and had percentage errors of 1 percent or less. 
Phase angles a t  three of the grid points were in error by 
1”; a t  all other grid points, the numerical solution gave 
phase angles which were exact to the nearest whole degree. 
At  L=6,000 and 10,000 krn., the amplitudes were exact 
to three significant figures and to tlie nearest whole 
percent of error; phase angles were exact to the nenrest 
whole degree. 

As a final test, numerical solutions to the baroclinic 
model were extended to 48 lir. for the cases with L=2,000 
and 6,000 km. At  L=2,000 kin. the amplitudes increased 
bl- IL fnctor in excess of 10‘ during the 48-hr. period. The 
numerical solution, however, was accurate to within 2-3 
percent. Phase angles were correct to within I”. At  
L=6,000 km. the implitude increased by a fiictor of 4-8 
o v a  the 48-hr. period. r\Tevertheless, the numerical 
solution wns accurate to within 1-2 m. and hnd percentage 
errors, to the nenrest whole percent, of zero. Phase 
angles given by tlie numerical solution were in error by  
1” tit five grid points; a t  the remnining grid points, the 
phase angles were exact to the nearest whole degree. 
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